2 research outputs found

    Novel Methodology for Scaling and Simulating Structural Behaviour for Soil-Structure Systems Subjected to Extreme Loading Conditions

    Get PDF
    This paper is concerned with the calibration and validation of a numerical procedure for the analysis of pile performance in soft clays during seismic soil–pile–superstructure interaction (SSPSI) scenarios. Currently, there are no widely accepted methods or guidelines. Centrifuge and shaking table model tests are often used to supplement the available field case histories with the data obtained under controlled conditions. This paper presents a new calibration method for establishing a reliable and accurate relationship between full-scale numerical analysis and scaled laboratory tests in a 1g environment. A sophisticated approach to scaling and validating full-scale seismic soil–structure interaction problems is proposed that considers the scaling concept of implied prototypes as well as “modelling of models” techniques that can ensure an excellent level of accuracy. In this study, a new methodology was developed that can provide an accurate, practical, and scientific calibration for the relationship between full-scale numerical analysis and scaled laboratory tests in the 1g environment. The framework can be followed by researchers who intend to validate their seismic soil–structure interaction findings

    Novel graph for an appropriate cross section and length for cantilever RC beams

    No full text
    Whether the design is done manually or by software, the designer will have difficulty choosing the economic and strength cross section. The designer, in this case, either relies on their experience or resorts to the method of trial and error. Especially for Cantilever beams with a long span as a result of risk deflections, it is exposed. The current theoretical study was performed on rectangular concrete cross sections of different dimensions and subjected to uniformly distributed loads. Based on a previous study, the sections are reinforced with a specific reinforcement ratio. Through an algorithm, Python 3.4 software, and an output file, the permissible deflections for each cross section were calculated according to the ACI 318M-19. Finally, the authors could draw a graph to choose the appropriate cross section for each required beam length in less time and effort
    corecore